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Abstract
Many large-scale machine learning (ML) applications use it-
erative algorithms to converge on parameter values that make
the chosen model fit the input data. Often, this approach
results in the same sequence of accesses to parameters re-
peating each iteration. This paper shows that these repeating
patterns can and should be exploited to improve the efficiency
of the parallel and distributed ML applications that will be a
mainstay in cloud computing environments. Focusing on the
increasingly popular “parameter server” approach to sharing
model parameters among worker threads, we describe and
demonstrate how the repeating patterns can be exploited. Ex-
amples include replacing dynamic cache and server structures
with static pre-serialized structures, informing prefetch and
partitioning decisions, and determining which data should
be cached at each thread to avoid both contention and slow
accesses to memory banks attached to other sockets. Experi-
ments show that such exploitation reduces per-iteration time
by 33–98%, for three real ML workloads, and that these im-
provements are robust to variation in the patterns over time.

1. Introduction
Data analytics (a.k.a. Big Data) has emerged as a primary
cloud computing activity for business, science, and online
services that attempt to extract insight from quantities of
observation data. Increasingly, such analytics center on statis-
tical machine learning (ML), in which an algorithm induces
a statistical model conforming to input data. Such models
can expose relationships among data items (e.g., for group-
ing documents into topics), predict outcomes for new data
items based on selected characteristics (e.g., for recommenda-
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tion systems), correlate effects with causes (e.g., for genomic
analyses of diseases), and so on.

This paper focuses on the major subset of ML approaches
that employ iterative algorithms to determine model parame-
ters that best fit a given set of input (training) data. Such an
algorithm iterates over the input data, refining its current best
estimate of the parameter values to converge on a final solu-
tion. In each iteration, input data items are evaluated against
the current parameters, some of which may be adjusted to
better fit those data items.

The common approach to parallelizing such computations
is to partition the input data among worker threads across
cores and machines, sharing only the parameter values and
values associated with determining them. While other designs
can be used, an increasingly popular design for maintaining
the distributed values is to use a so-called parameter server
accessed via a simple key-value interface [1, 24, 35]. Not
surprisingly, even with the loose synchronization typically
used in parallel ML computations, such as synchronizing each
iteration with a barrier, a.k.a. a Bulk Synchronous Parallel
(BSP) style, the efficiency of maintaining the shared state is
a major runtime determinant.

This paper explores an opportunity created by the iterative-
ness of the iterative algorithms: knowable repeating patterns
of access to the share state. Often, each thread processes its
portion of the input data in the same order in each iteration,
and the same subset of parameters are read and updated any
time a particular data item is processed. So, each iteration
involves the same pattern of reads and writes to the shared
state.

Knowledge of these patterns can be exploited to improve
efficiency, both within a multi-core machine and for commu-
nication across machines. For example, within a machine,
state used primarily by one thread can be placed in the mem-
ory NUMA zone closest to the core on which it runs, while
significantly write-shared state can be replicated in thread-
private memory to reduce lock contention and synchronized
only when required. Naturally, cross-machine overheads can
be reduced by appropriate partitioning and prefetching of
parameter state. But, one can gain further efficiency by con-
structing static structures for both the servers’ and workers’
copies of the shared state, rather than the general dynamic



structures that would typically be used, organized accord-
ing to the prefetch and update batches that will occur each
iteration so as to minimize marshaling costs. Indeed, even
those batch prefetch and update requests can be constructed
statically.

Using three real and oft-studied ML applications (Topic
Modeling, Collaborative Filtering, and PageRank), we ex-
periment extensively with a broad collection of iteration-
aware specializations in a parameter server (called IterStore)
that was originally designed assuming arbitrary access pat-
terns. Altogether, we find that the specializations reduce per-
iteration runtimes by 33–98%. Measuring their individual
impacts shows that different specializations are most signif-
icant for different ML applications, based on their use of
shared state, and that there can be synergistic dependencies
among them. For example, informed prefetching is crucial
for all of the applications, but must be coupled with static
pre-marshaled cache structures to achieve high performance
on PageRank.

We also evaluate costs associated with attempting to ex-
ploit iterative-ness. Naturally, the work of detecting and pro-
cessing per-iteration patterns is part of an application’s overall
execution time. We find that most of the specializations com-
pensate for those costs, though cross-machine partitioning
surprisingly sometimes does not. We also find that, although
capturing the patterns during execution of the first iteration
does work, it is more efficient if the application instead does
an explicit virtual iteration that performs the reads and up-
dates without affecting any state. Finally, we find that the
benefits of the specializations are robust to imperfect informa-
tion about the pattern, as might occur when converged values
are no longer modified or responsibility for processing some
input data items is shifted to another thread.

This paper makes three primary contributions. First, it
identifies iterative-ness as a property of many parallel ML
algorithms that can and should be exploited to improve
efficiency significantly. Second, it describes and evaluates
a broad collection of specializations that exploit iterative-
ness effectively, showing their overall and individual values
for several real ML applications. Third, it describes and
evaluates the concept of a virtual iteration and compares
it with detection of patterns during the first iteration.

2. Iterative ML and systems
Despite the use of a common name, a wide variety of activ-
ities falls under the broad terms “data analytics” and “Big
Data”, ranging from aggregation queries and summary report
generation to advanced statistical machine learning (ML).
Even within statistical ML, a variety of models and algorith-
mic styles is used for data analytics, and various specialized
execution frameworks continue to be explored. This section
describes the particular context for our work, including itera-
tive ML, computational model, and example applications.

2.1 Iterative fitting of model parameters
This paper focuses on the major subset of ML approaches that
we refer to as iterative ML. Generally speaking, statistical
ML consists of algorithmically processing a set of input
data to identify a mathematical model that fits that data.
Iterative ML approaches assume a particular mathematical
model will describe the input data and use an algorithm to
identify parameter values for that model that make it fit the
input data most closely. That is, the computation attempts
to optimize the model by maximizing an objective function,
which generally describes the error.

In iterative ML, the algorithm starts with some initial
parameter value guesses, and then performs a number of
iterations to refine them. Each iteration evaluates each input
datum, one by one, against current model parameters and
adjusts parameters to better fit that datum. Various stopping
conditions may be used, such as when the objective function
improvement slows sufficiently or just a given amount of time
has been spent refining.

2.2 Parallel computation model
Increasingly, iterative ML applications process large data sets
to induce detailed models with large numbers of parameters;
the term “Big Data” arose in large part from this trend. When
the problem size is too big for a single thread to find a solution
in an acceptable amount of time, one can use multiple worker
threads executing on the cores of one or more machines.
Generally speaking, parallel realizations of iterative ML
partition input data among the worker threads that each
contribute to computing the derived parameter values.

While other models are being explored [21, 24, 30], the
common parallel execution model for iterative ML is based
on the Bulk Synchronous Parallel (BSP) model. In BSP, each
thread executes a given amount of work on a private copy of
shared state and barrier synchronizes with the others. Once
all threads reach the barrier, updates are exchanged among
threads, and a next amount of work is executed. Commonly,
in iterative ML, one iteration over the input data is performed
between each pair of barriers.

While early parallel ML implementations used direct
message passing among threads for update exchanges, a
parameter server architecture has become a popular ap-
proach to making it easier to build and scale ML applica-
tions [1, 2, 14, 16, 24, 35, 40, 42]. Figure 1 illustrates this
architecture in which all state shared among worker threads
is kept in a key-value store, which is commonly sharded
across the same machines used to execute the worker threads.
Worker threads process their assigned input data using simple
READ and UPDATE methods to check and adjust parame-
ter values. To avoid constant remote communication, work-
ers can cache parameter values locally, and both READ and
UPDATE these cached values. A CLOCK method is used to
identify a point at which a worker’s cached updates must
be pushed to the shared key-value store and its local cache



state must be refreshed, and it is usually implemented as a
barrier. UPDATE operations are assumed to be sufficiently
commutative and associative that concurrent UPDATEs by
different workers can be applied to the shared store in any
order; thus, there are no update conflicts, by definition. Simi-
larly, having READs return cached values that do not reflect
all recent UPDATEs by other workers is assumed to not un-
duly impact the convergence rate. Fortunately, many iterative
ML applications, including our example applications, satisfy
these assumptions [24, 28]. We consider the case where there
is a CLOCK after each iteration, and optionally additional
CLOCKs within an iteration.

Parameter Server 

Parameter cache 

... 
Worker Worker 

Machine 

Parameter cache 

... 
Worker Worker 

Machine 

... 

Figure 1. Parallel ML with parameter server.

2.3 Example applications
We use three real ML applications that use different oft-used
iterative ML approaches in our experiments, described here
to reinforce the general background.

Collaborative Filtering (CF) is a technique commonly
used in recommender systems (e.g. recommending movies
to users on Netflix). The key idea is to discover latent
interactions between the two entities (e.g., users and movies)
via matrix factorization. Given a partially filled matrix X (e.g.,
a rating matrix where entry (i, j) is user i’s rating of movie
j), matrix factorization factorizes X into matrices L and R
such that their product approximates X (X ≈ LR). We use
stochastic gradient descent (SGD) [18, 28], which is a popular
method for large scale CF. Each worker thread is assigned
a subset of the observed entries in X ; in each iteration, each
worker processes every element of its assigned subset and
updates the corresponding row of L and column of R based
on the gradient. L and R are stored in the parameter server so
that entries can be accessed by any worker, as needed.

Topic Model (TM) is an unsupervised method for discov-
ering hidden semantic structures (“topics”) in a (unstructured)
collection of “documents”. Popular applications include news
categorization, visual pattern discovery in images, ancestral
grouping from genetics data, and community detection in
social networks. To implement topic modeling, we divide the
set of input documents evenly among worker threads and ini-
tialize values in the parameter server for the document-topic
and word-topic distributions (tables) being derived; there is
also a special word-topic “summation row” that provides the

summation of all other rows. Then, we execute the collapsed
Gibbs sampling algorithm [23]. In each iteration, each worker
thread passes through all the words in its input documents.
For a word with word id in a document with doc id, the
thread will read the doc id-th row of the document-topic ta-
ble and the word id-th row, as well as the summation row of
the word-topic table. The thread then calculates a new topic
assignment and updates these rows.

PageRank (PR) assigns a weighted score (PageRank)
to every vertex in a graph [5]. A vertex’s score measures
its importance in the graph, with higher scores indicating
higher importance. The set of scores can be treated as a
table where each row corresponds to the PageRank score
of one vertex, and we apply the power iteration approach
until the PageRanks stop changing. In each iteration, the
algorithm passes through all edges in the graph and updates
the PageRank of the destination node according to the current
PageRank of the source node. The set of edges is partitioned
evenly among worker threads, and the scores are kept in the
parameter server. PageRank lends itself well to an explicit
graph processing model of computation, such as that of
GraphLab [21, 30], which makes it a usefully challenging test
case for more general architectures like those built around a
parameter server.

3. Exploiting iterative-ness for performance
The iterative-ness discussed above creates an opportunity:
when per-thread sequences of reads and updates repeat each
iteration, they can be known in advance and used to reduce the
overheads associated with maintaining the shared state. This
section discusses approaches to identifying the sequences and
a variety of ways that they can be exploited.

3.1 Obtaining per-iteration access sequence
There are several ways that a parameter server can obtain the
access sequences, with different overheads and degrees of
help from the application writer. Of course, an ideal solution
would have no overhead and need no help, but realistic
options are non-optimal on one or both of these axes.

At one end of the spectrum would be completely trans-
parent detection, in which the parameter server gathers the
pattern between pairs of CLOCK calls. Although this seems
straightforward, it is not for two primary reasons. First, many
ML applications use the parameter server before beginning
to iterate, such as to initialize parameter values appropri-
ately. Because the initialization access pattern likely does not
match the per-iteration pattern, and may involve several calls
to CLOCK, identifying the right pattern would require com-
paring inter-CLOCK patterns until a repeat is found. Second,
not every iterative ML application is perfectly repetitive, so
such a repeat may never be found, either because there are no
exact matches or perhaps even no significant repetitiveness at
all. Third, exploitation of repeating patterns can only begin
after they are known, so a significant portion of the applica-



tion may be executed inefficiently until then. And, of course,
the shared state must be retained in any conversion of the pa-
rameter server to a more efficient configuration. These three
issues make the fully transparent approach high overhead and
not robust; we do not consider it further.

Instead, we explore two options that involve some amount
of assistance from the application programmer, illustrated
in Figure 2: explicit reporting of the sequence (right-most
pseudo-code) and explicit reporting of the iteration bound-
aries (middle pseudo-code). Both options are described in
terms of the access sequence being reported once, at the be-
ginning of the application. But, detecting and specializing
can be repeated multiple times in an execution, if the access
pattern changes dramatically. Section 5.6 shows that doing
so is unnecessary for moderate access pattern changes.

// Original 
init_params() 
ps.clock() 
do { 
  do_iteration() 
  ps.clock() 
} while (not stop) 
 

// Gather in first iter 
init_params() 
ps.clock() 
do { 
  if (first iteration) 
    ps.start_gather(real) 
  do_iteration() 
  if (first iteration) 
    ps.finish_gather() 
  ps.clock() 
} while (not stop) 
 

// Gather in virtual iter 
ps.start_gather(virtual) 
do_iteration() 
ps.finish_gather() 
init_params() 
ps.clock() 
do { 
  do_iteration() 
  ps.clock() 
} while (not stop) 
 

Figure 2. Two ways of collecting access information. The
left-most pseudo-code illustrates a simple iterative ML program
flow, for the case where there is a CLOCK after each iteration. The
middle pseudo-code adds code for informing the parameter server of
the start and end of the first iteration, so that it can record the access
pattern and then reorganize (during ps.finish gather) to exploit it.
The right-most pseudo-code adds a virtual iteration to do the same,
re-using the same do iteration code as the real processing.

Explicit virtual iteration. The first, and most efficient,
option involves having the application execute what we call a
virtual iteration. In a virtual iteration, each application thread
reports their sequence of parameter server operations (READ,
UPDATE, and CLOCK) for an iteration. The parameter server
logs the operations and returns success, without doing any
reads or writes. Naturally, because no real values are involved,
the application code cannot have any internal side-effects or
modify any state of its own when performing the virtual
iteration. So, ideally, the code involved in doing an iteration
would be side-effect free (at least optionally) with respect to
its local state; our example applications accommodate this
need. If the per-iteration code normally updates local state,
but still has repeating patterns, then a second side-effect free
version of the code would be needed for executing the virtual
iteration to expose them. Moreover, because no real values
are involved, the application’s sequence of parameter server
requests must be independent of any parameter values read.
Note that if the sequence were to depend on the parameter
values, then the sequence would likely vary from iteration
to iteration. Thus, the independence property is expected in
applications that meet our overall requirement that the request

sequence is (roughly) the same from iteration to iteration, and
indeed, our example applications satisfy this property.

A virtual iteration can be very fast, since operations are
simply logged, and does not require any inefficient shared
state maintenance. In particular, the virtual iteration can be
done before even the initialization of the shared state. So,
not only is every iteration able to benefit from iterative-ness
specializations, no transfer of state from an inefficient to
an efficient configuration is required. Moreover, the burden
of adding a virtual iteration is modest—only ≈10 lines of
annotation code for our ML applications.

Explicit identification of iteration boundaries. If a vir-
tual iteration would require too much coding effort, an appli-
cation writer can instead add start and end breadcrumb calls
to identify the start and end of an iteration. Doing so removes
the need for pattern recognition and allows the parameter
server to transition to more efficient operation after just one
iteration. This option does involve some overheads, as the ini-
tialization and first iteration are not iterative-ness specialized,
and the state must be retained and converted as specializations
are applied. But, it involves minimal programmer effort.

3.2 Exploiting access information
In this section we detail parameter server specializations
afforded by the knowledge of repeating per-iteration access
patterns.

Data placement across machines. When parameter state
is sharded among multiple machines, both communication
demands and latency can be reduced if parameters are co-
located with computation that uses them. As others have
observed, the processing of each input data item usually in-
volves only a subset of the parameters, and different workers
may access any given parameter with different frequencies.
Systems like GraphLab [21, 30] exploit this property aggres-
sively, partitioning both input data and state according to
programmer-provided graphs of these relationships. Even
without such a graph, knowledge of per-iteration access pat-
terns allows a subset of this benefit. Specifically, given the
access sequences, the system can decide in which machine
each parameter would best be stored by looking at the access
frequency of the workers in each machine.

Data placement inside a machine. Modern multi-core
machines, particularly larger machines with multiple sockets,
have multiple memory NUMA zones. That is, a memory
access from a thread running on given core will be faster
or slower depending on the “distance” to the corresponding
physical memory. For example, in the machines used in our
experiments (see Section 5), we observe that an access to
memory attached to a different socket from the core can be as
much as 2.4x slower than an access to the memory attached
the local socket. Similar to the partitioning of parameters
across machines, knowledge of the access sequences can
be exploited to co-locate worker threads and data that they
access frequently to the same NUMA memory zone.



Static per-thread caches. Caching usually improves per-
formance. Beyond caching state from remote server shards,
per-worker-thread caching can improve performance in two
ways: reducing contention between worker threads (and thus
locking overheads on a shared client cache) and reducing
accesses to remote NUMA memory zones. But, when cache
capacity is insufficient to store the whole working set, re-
quiring use of a cache replacement policy (e.g., LRU), we
have observed that per-thread caches hurt performance rather
than help. The problem we observe is that doing eviction (in-
cluding propagating updates) slows progress significantly, by
resulting in much more data propagation between data struc-
tures than would otherwise be necessary. Given the access
patterns, one can employ a static cache policy that deter-
mines beforehand the best set of entries to be cached and
never evicts them. The size of this per-thread cache can also
be optimized—see Section 4.6.

Efficient data structures. The client library is usually
multi-threaded, with enough application worker threads to use
all cores as well as background threads for communication,
and the parameter server is expected to store arbitrary keys as
they are inserted, used, and deleted by the application. As a
result, a general-purpose implementation must use thread-
safe data structures, such as concurrent hash maps [25]
for the index. However, given knowledge of the access
patterns, one can know the full set of entries that each data
structure needs to store, allowing use of more efficient less-
general data structures. For example, one can instead use non-
thread-safe data structures for the index and construct all the
entries in a preprocessing stage, as opposed to inserting the
entries dynamically. Moreover, a data structure that does not
require support for insertion and deletion can be organized in
contiguous memory in a format that can be copied directly to
other machines, reducing marshaling overhead by eliminating
the need to extract and marshal each value one-by-one. As
noted earlier, the first iteration may not provide perfect
information about the pattern in all subsequent iterations.
To retain the above performance benefits while preserving
correctness, one can fall back to using a thread-safe dynamic
data structure solely for the part of the pattern that deviates
from the first iteration, as discussed in Section 4.3.

Prefetching. Under BSP, each worker thread must use
updated values after each clock, requiring that each cached
value be refreshed before use in the new iteration. Natu-
rally, read miss latencies that require fetching values from
remote server shards can have significant performance impact.
Prefetching can help mask the high latency, and of course
knowing the access pattern maximizes the potential value of
prefetching. One can go beyond simply fetching all currently
cached values by constructing large batch prefetch requests
once and using them each iteration, with multiple prefetch
requests used to pipeline the communication and computation
work. So, for example, a first prefetch request can get values

used at the beginning of the iteration, while a second prefetch
request gets the values used in the remainder of the iteration.

4. Implementation
IterStore is a distributed parameter server that maintains glob-
ally shared data for applications. It is an improved version
of LazyTable [15, 24], following the computational model
described in Section 2.2, and it employs our optimizations
(optionally) when informed of the per-iteration access pat-
terns. Although our descriptions and experiments in this pa-
per focus on the traditional BSP execution model, the same
optimizations apply to the more flexible Stale Synchronous
Parallel (SSP) [13, 24] model supported by LazyTable, and
we observe approximately the same relative improvements;
that is, the benefits of exploiting iterative-ness apply equally
to SSP.

4.1 System architecture
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App. worker 

IterStore library 

Thread cache  

Master shard-0 

Process cache Partition-0 Partition-1 
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pusher puller 

Thread cache  

App. worker 
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App. worker 

IterStore library 

Thread cache  

Master shard-1 

Process cache Partition-0 Partition-1 

Partition-0 Partition-1 

Thread cache  
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Figure 3. IterStore with two partitions, running on two
machines with two application threads each.

The parameter data in IterStore is managed as a collection
of rows indexed by keys, accessed by application threads
as described in Section 2.2. A row is a user-defined data
type and is required to be serializable and be defined with
an associative aggregation operation, allowing updates to be
applied in any order. 1

The IterStore architecture is depicted in Figure 3. The
distributed application program usually creates one process
on each machine and each process links to one instance
of the IterStore library. Each IterStore instance stores one
shard of the master version of the data in its master store.
The data is not replicated, and fault tolerance is handled by
checkpointing [15]. The application threads don’t directly
access the master data. Instead, they access the process cache
that is shared by all threads in the same instance. One level
above the process cache, each application thread has a private
thread cache. For simplicity, the current implementation
assumes that each physical machine has a single IterStore
instance, and that each process cache is large enough to cache

1 In order to use the “efficient data structures” specialization, the row must
be fixed sized.



all values used by local worker threads. To accommodate
cases where there is not that much memory capacity available,
the process cache would store only a subset of said values,
exploiting the static cache approach used for thread caches;
the iteration-aware specializations discussed in this section
would still be effective.

IterStore follows the BSP model, wherein readers are only
required to see updates from before the most recent clock.
As a result, data stored in master stores, process caches, and
thread caches can be inconsistent inside a clock. To reduce
communication overhead, IterStore batches updates in thread
caches and process caches, and propagates them to master
stores at the edge of one clock. We attach a data age field
to each process cache (and also thread cache) row, so that
readers can detect out-of-date data and refresh from master
stores.

IterStore performs communication asynchronously with
three types of background threads: keeper threads manage
the data in master stores; pusher threads move data from
process caches to master stores by sending messages to
keeper threads; puller threads move data from master stores
to process caches by receiving messages from keeper threads.

To increase communication throughput, IterStore globally
divides the key space (by the hash of the key) into M
partitions; each of the N IterStore machines manages the
rows falling in different partitions with different threads in
different data structures. For each of the M partitions, each
machine launches one keeper thread, one pusher thread, and
one puller thread dedicated to the rows of that partition. Each
machine’s shard of the master data is divided into M pieces
in its master store, thus N×M pieces in total. (The sharding
scheme is discussed in Section 4.4.) The keeper thread of
partition-j of machine-i exchanges messages with
the pusher thread and puller thread of partition-j of all
N machines.

4.2 Access information gathering
IterStore supports both ways of gathering access information
described in Section 3.1, allowing the application to report
the access information either in a virtual iteration or in a
real iteration (e.g., the first). When finish gather()
is called, IterStore summarizes the gathered information,
including the generation of per-thread and machine-wide
access rates of all rows, and applies the specializations
accordingly.

4.3 Efficient data structures
Because the application can use arbitrary keys to index the
stored data, IterStore uses hash maps to store the rows (or
their pointers) in master stores, process caches, and thread
caches. If not using the virtual iteration approach, IterStore
has to start with empty data structures and have the worker
threads insert rows dynamically. For master stores and thread
caches, dynamic row insertion might not be a big problem,
because these data structures are only accessed by one thread.

Process caches, however, are shared. Each process cache
partition is accessed by the application worker threads, pusher
thread, and puller thread. To support dynamic row insertion,
we have to either always grab a global lock on the index
before accessing or use a thread-safe data structure, and both
approaches are expensive. Moreover, when the background
threads exchange updates between process caches and master
stores, they need to go through every updated row in their
partitions, incurring significant marshaling and update costs.

When IterStore is informed with the set of rows to be
stored, it can construct a static data structure with all the
rows in it and an immutable index, so that only per-row locks
are needed. When the size of each row is fixed (true for all
our benchmarks), IterStore will allocate contiguous memory
to store the rows for each storage module. Row keys are
stored together with the values, making the data structure
self-explanatory, so that it can be sent in bulk without per-row
marshaling work. The receiving sides still need to unmarshall
the message row-by-row, because the layout of the receiver
might not be the same as the sender. For random key access,
IterStore uses the hash maps to store the mapping from row
keys to memory indices, but these hash maps are immutable
and can be non-thread-safe.

To deal with the situation where the application needs to
access unreported rows (i.e., the current iteration has deviated
from the first iteration’s pattern), IterStore uses two sets of
data structures for each process cache partition, a static part
and a dynamic part. The static part is what we described
above, and the dynamic part uses a thread-safe hash map to
store the additional unreported rows. When a thread fails to
find a desired row in the static part, it checks the dynamic
part, creating a new row if not found there either.

4.4 Data placement across machines
IterStore determines the partition ID of a row by the hash of
its key, but the master version of each row can still be stored
in any of the master stores among N machines. Without the
access information from the application, IterStore determines
the machine ID of each row using another hash, so that all
rows will be stored uniformly on all N×M master stores.
With the access information, IterStore assigns each row to
machines in a way that minimizes cross-machine traffic,
decided in the preprocessing stage, as described next.

Because of the process caches, each machine sends to
master stores at most one read and one update request for
each row, per clock. Since the batched access frequency is
either one or zero,2 IterStore simply places each row on any
one of the machines that has access to it. When there are
multiple machines accessing the same row, IterStore greedily
chooses the machine that has the least number of rows.

2 In case of iterations with multiple clocks, where the work done varies
between the clocks of an iteration, the batched access frequency of
machine-i to row-j is the number of clocks in which it accesses row-j,
divided by the total number of clocks.



The placement decision is accomplished in a distributed
manner, by a metadata storage module of the master stores.
The master stores of partition-i decide and keep the ma-
chine placement of rows that are hashed to partition-i.
For a particular row-k in partition-i, we choose which
master store makes the decision by hashing its key. Suppose
the hash is p, in the preprocessing stage, all machines send
their batched access frequency of row-k to machine-p,
which chooses the machine to store it based on the frequen-
cies. Suppose the chosen one is machine-q, it would in-
form all machines to send further READ and UPDATE re-
quests to machine-q. Each machine maintains a local map-
ping of these placement decisions.

4.5 Data placement inside a machine
In our implementation, most of the memory accesses are by
application worker threads to thread caches, pusher/puller
threads to process caches, and keeper threads to master stores.
While many systems assume that access latencies to all
memory regions are the same and allocate memory blindly,
it is beneficial to allocate memory close to the execution in
modern multi-core systems [3]. Because the data structures
are allocated statically in the preprocessing stage, IterStore
can co-locate the data structures in the same NUMA zones
with the thread accessing them most.

Suppose each machine has C CPU cores and Z NUMA
zones. We encourage the application writer to create one
process per machine and C application threads per process.
IterStore will divide the key space into C

2 partitions, so that
with three background threads per partition, IterStore can
(empirically) fully utilize all CPU cores when the application
threads are blocked for communication. For each set of
C
Z cores in a NUMA zone, we have C

Z application threads
and the background threads of C

2Z partitions run on these
cores and only allocate memory in the local NUMA zone.
Note that each thread cache is allocated by its corresponding
application thread, each process cache partition by its pusher
thread, and each master store partition by its keeper thread.
As a result, all data structures can be accessed locally by the
threads accessing them most often.

4.6 Contention and locality-aware thread caches
Thread caches, in addition to a shared process cache, can
improve parameter server performance in two ways: reducing
contention and increasing memory access locality. To assist
with experimentation, the capacity of each thread cache
is specified as an input parameter, which might otherwise
be determined by dividing the total amount of memory
remaining for the application (after initialization, process
cache allocation, and master store allocation) by the number
of threads per machine.

When access information is not provided, IterStore de-
faults to an LRU policy for cache eviction. However, we find
there is sufficient overhead in doing row eviction and LRU
list maintenance that dynamic thread caches often hurt per-

formance rather than help. To avoid this overhead, IterStore
uses a static cache policy when it is provided with the access
information of the application; IterStore determines the set of
rows to be cached in the preprocessing stage and never evicts
them. A first small number of rows address contention and
the remainder address locality. The remainder of this section
describes the selection process for each.

As described in Section 4.1, each process cache partition
is accessed by all application threads, one pusher thread, and
one puller thread. IterStore explicitly uses thread caches to
reduce contention on the process cache. In the preprocessing
stage, IterStore estimates the contention probability of each
row accessed by each application thread. If the estimated
probability is higher than a predetermined threshold, IterStore
caches that row in the thread cache.

We use the following model to estimate the contention
probability of a row. We define the access frequency AF( j)

i
as the number of times (0 or 1) that thread-i accesses
row-j, divided by the number of times that thread-i
accesses any row, in one iteration. If we assume the time
it takes to access each row is the same, access frequency
equals access probability AP( j)

i , which is the probability that
at a given point of time, thread-i is accessing row-j.
Consider a row-j that is accessed by thread-i, and let
n j ≥ 2 be the number of threads that access row-j. Let
CP

( j)
i be the probability that the access of thread-i to

row-j overlaps with one or more accesses to row-j by
other threads. Our goal is to use thread caches to reduce all
CP

( j)
i to below a target bound CPB. To do this, we calculate

a threshold AFT
( j)
i for each access frequency such that if

some access frequency AF( j)
i is larger than AFT( j)

i we will
have thread-i cache row-j in its thread cache. Under
the model, it suffices to set AFT( j)

i = CPB
n j−1 for all i and j, as

shown in Equation 1.

CP
( j)
i = 1−∏

i′ 6=i
(1−AP( j)

i′ )

= 1−∏
i′ 6=i

(1−AF( j)
i′ )

≤ 1− (1−max
i′ 6=i

AF
( j)
i′ )n j−1

≤ 1− (1−max
i′ 6=i

AFT
( j)
i′ )n j−1

= 1− (1− CPB

n j−1
)n j−1

≈ (n j−1)× CPB

n j−1

= CPB

(1)

The number of rows cached as a result of these thresholds
is bounded by max j(1/AFT

( j)
i ), which is no greater than

n−1
CPB , where n is the total number of threads in this machine.
The remainder of available IterStore thread cache capacity
is used to reduce the amount of remote memory access. As
described in Section 4.5, memory access from application



threads to process caches is not necessarily local. The static
cache selection policy picks additional rows in decreasing
order of access frequency, skipping those stored in the local
memory NUMA zone at the process cache level.

4.7 Prefetching
In the preprocessing stage, each IterStore process cache
partition summarizes the union set of rows that application
worker threads on that machine read and uses it to construct
prefetch requests. At the beginning of each clock, a prefetch
module sends these pre-constructed prefetch messages to
master stores, requesting a refresh of the rows.

To better pipeline the prefetch with computation work,
we can do pipelined prefetch when we know the ordering
that each row is read. Each IterStore process cache partition
creates two prefetch requests for each clock, controlled by an
early-ratio parameter. The early prefetch requests contain the
rows that satisfy the first early-ratio READ operations, and
the normal prefetch requests contain the other rows used. The
early prefetch requests are prioritized over the normal ones,
so that we can reduce the waiting time at the beginning of
each clock. We generally observe that an early-ratio of 10%
works well, and Section 5.5 describes some experimental
results.

5. Evaluation
This section describes our experiment results, showing that
exploiting iterative-ness significantly improves efficiency,
quantifying individual benefits of the specializations, and
showing that they are robust to some deviations from expected
per-iteration access patterns.

5.1 Experimental setup
Hardware Information. All experiments use an 8-node clus-
ter of 64-core machines. Each node has four 2-die 2.1 GHz 16-
core AMD R© Opteron 6272 packages, with a total of 128GB
of RAM and eight memory NUMA zones. The nodes run
Ubuntu 12.04 and are connected via an Infiniband network
interface (40Gbps spec; ≈13Gbps observed).

Application benchmarks. We use the following three
example applications: PageRank (PR), Collaborative Filtering
(CF), and Topic Modeling (TM). For CF, we use the Netflix
dataset, which is a 480k-by-18k sparse matrix with 100m
known elements. The application is configured to factor it
into the product of two matrices with rank 1000. For TM, we
use the Nytimes dataset [39], containing 100m tokens in 300k
documents with a vocabulary size of 100k, and we configure
the application to generate 1000 topics. For PageRank, we
use the twitter-graph dataset [26], which is a web graph with
40m nodes and 1.5b edges. For each application, the virtual
iteration annotation requires only ≈10 lines of code.

IterStore setup. We run one application process on each
machine. Each machine creates 64 computation threads and
is linked to one instance of IterStore library with 32 partitions.

We assume each machine has enough memory to not need
replacement in its process cache.

Experiment methodology. Note that our specializations
don’t change the convergence rate as a function of iterations
completed. Only the per-iteration execution time is affected.
Therefore, we report on the time required to complete a given
number of iterations in the bulk of our analysis. We run
each experiment at least thrice (except for Figure 5), report
arithmetic means, and use error bars (often too small to see)
to show standard deviations.

5.2 Overall performance
Figure 4 shows performance for each of the three ML appli-
cations running on four system setups: IterStore without any
iterative-ness specializations (“IS-no-opt”), IterStore with all
of the specializations and obtaining the access pattern from
the first real iteration (“IS-no-viter”), IterStore with all spe-
cializations and use of a virtual iteration (“IterStore”), and
GraphLab [21, 30]3 using its synchronous engine. Comparing
different ones of the four setups allow evaluation of different
key aspects, including how much benefit IterStore realizes
from iterative-ness specializations, how much more efficient
using a virtual iteration is than obtaining the patterns in the
first iteration, and, to put the numbers in a broader context,
how IterStore compares to a popular efficient system with
and without the specializations.

Each bar shows the time required for the application to ini-
tialize its data structures and execute 5 iterations, broken into
four parts: preprocessing, initialization, first iteration, and
next four iterations. Preprocessing time includes gathering
the access information and setting up data structures accord-
ing to them, which is zero for IS-no-opt; GraphLab’s pre-
processing time is its graph finalization step, during which it
uses the application-supplied graph of dependencies between
data-items to partition those data-items across machines and
construct data structures. Initialization includes setting ini-
tial parameter values as well as some other application-level
initialization work. The first iteration is shown separately,
because it is slower for IS-no-viter and because that setup
performs preprocessing after the first iteration; all five itera-
tions run at approximately the same speed for the other three
systems.

The results show that the specializations decrease per-
iteration times substantially (by 33–98%). Even when ac-
counting for preprocessing times, exploiting iterative-ness
reduces the time to complete five iterations by 29–82%. As
more iterations are run, the improvement can approach the
per-iteration improvement, although early convergence of
some parameters can change the access pattern over time and
thereby reduce the effectiveness of exploiting iterative-ness.
Figure 5 shows performance for the same workloads complet-
ing 100 iterations, instead of just five. For these applications,

3 The GraphLab code was downloaded from https://github.com/
graphlab-code/graphlab/, with the last commit on Jan 27, 2014.
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Figure 4. Performance comparison, running 5 iterations.
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Figure 5. Performance comparison, running 100 iterations. The “IS-no-opt” bar in the PageRank figure is cut off at 2000 sec,
because it’s well over an order of magnitude worse than the other three.

greater benefit is achieved with more iterations, because they
don’t change their patterns significantly and the preprocess-
ing work is better amortized. Section 5.6 explores further
the sensitivity of exploiting iterative-ness to such changes.
Note that the entire range of few to 100+ iterations can be of
interest in practice, depending on the available time budget
and the convergence rate.

The results (more easily seen in Figure 4) also show
that using a virtual-iteration is more efficient than collecting
patterns in the first real iteration, because the latter causes
the initialization and first iteration to be inefficient. Moreover,
doing preprocessing after the first iteration requires copying
the parameter server state from the original dynamic data
structures to the new static ones, making the preprocessing
time longer.

With optimizations and virtual-iteration turned on, Iter-
Store out-performs GraphLab for all of the three benchmarks,
even PageRank which fits GraphLab’s graph-oriented execu-
tion style very well. For CF and TM, IterStore out-performs
GraphLab even without the optimizations, and by more with
them. IterStore’s performance advantages have two sources.
First, the GraphLab abstraction couples parameter data with
computation making it less suitable for CF and TM. Second,
though the GraphLab implementation implicitly uses some of
our proposed specializations, it does not use NUMA-aware
data placement or contention-aware thread caches. Note that
we under-estimate GraphLab’s initialization and preprocess-

ing time in these results, because GraphLab does some of its
preprocessing work together with its data loading. We are not
showing the data loading time of these systems, because it is
huge for GraphLab, due to the fact that GraphLab uses un-
partitioned text file as input, while IterStore uses partitioned
binary input.

Table 1 summarizes some features of the three benchmarks.
We show the total number of rows, size of each row, and
the average degree of each node when we express them
with a sparse graph.4 A graph is more sparse when it has
a smaller average node degree. The PR benchmark gets huge
benefit from our optimizations because its corresponding
graph is very sparse, with a huge number of tiny rows, and
both features cause our previous IterStore implementation to
be inefficient.

App. # of rows Row size (bytes) Ave. node degree
CF 500k 8k 200
TM 400k 8k 250
PR 40m 8 75

Table 1. Features of benchmarks.

4 Though CF and TM are not graphical applications, some frameworks, such
as GraphLab, will still express the computation using graphical structures,
and here we use the same graphical structures as those used in GraphLab
toolkits to calculate the average node degree.
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Figure 6. Optimization effectiveness break down.

5.3 Optimization effectiveness break down
The optimizations proposed in this paper can work indepen-
dently. In this experiment, we break down the contribution
coming from each of them, as shown in Figure 6. We employ
two approaches to investigate that. First, we turn on each of
the individual optimizations alone (Figure 6(a)) and measure
speed up compared with having none of the optimizations.
Second, we turn off each of the optimizations (Figure 6(b)),
with the others on, and measure how much the execution
is slowed down compared with having all of the optimiza-
tions. The results show that most of the optimizations are
effective when deployed independently of others, and we
also have several interesting findings. First, we find different
optimizations are most significant for different applications,
based on their use of shared states. PR benefits most from
prefetching and static data structures, while CF benefits most
from prefetching and in-machine memory management. Sec-
ond, we find there can be synergistic dependencies among
these optimizations. Comparing the “cross-machine” speed

up in both figures, we find its benefit becomes less when
we have other optimizations. This is because there is less
cross-machine communication overhead in the presence of
other optimizations. We also find “prefetch” and “static-ds”
offer much more speed up when applied collaboratively than
individually. This is because, when both of them are present,
IterStore local stores and master stores can exchange data
in a batched form, with lower marshaling and unmarshaling
overhead.

Figure 6(c) shows the costs of each of these optimizations
in the preprocessing stage, together with some costs shared
by all of them. “Gather” stands for collecting information
via virtual iteration, “Merge” stands for merging information
from all threads in each machine, “Cross-machine” to “Static-
ds” refer to the respective optimizations, and “Other” stands
for the rest of time spent, mostly on synchronization inside
the procedure. We break the time for thread cache preparation
into a decision part and a creation part. The creation part is the
cost of creating the cache data structures, which is inevitable



in order to use the cache, and all “Static-ds” costs are for
creating data structures for local stores. We find in CF and
TM, these two bars account for most of the preprocessing
time.

5.4 Contention and locality-aware caching
This set of experiments compares the performance of Iter-
Store’s static thread-caching policy with the LRU policy. We
increase the capacity of the thread cache from zero to the size
that is large enough to store all values accessed by a thread,
and compare time per iteration, as shown in Figure 7. We are
not showing the data point for cache capacity being zero in
Figure 7(b), because it is too high. TM has one summation
row that needs to be updated whenever the topic assignment
of any word is changed; when the cache capacity is zero, each
iteration takes 493 seconds. The results show that IterStore’s
cache policy based on the known access pattern outperforms
LRU. For all three benchmarks, time per iteration curves for
LRU first go up and then go down, which can be explained
as follows. When the cache capacity is small, there are few
cache hits because most rows are already evicted before being
accessed a second time, and the time per iteration increases
with increasing cache sizes due to the increasing overheads
for cache insertions and evictions. On the other hand, when
the cache capacity is sufficiently large, the benefit from in-
creased hit rates outweighs these overheads, and the time per
iteration decreases. For our static cache policy, even when we
allocate only a tiny amount of memory for the cache, it almost
always gives positive benefits from reduced contention and
remote memory accesses. Moreover, it performs slightly, or
in the case of PR significantly, better than LRU even when
the thread cache capacity is large enough to store all values,
for two reasons. First, even when there is enough capacity,
IterStore’s cache policy does not cache rows that have low
contention probability and are stored in the local memory
NUMA zone, because we find caching these rows results in
unnecessary work for negligible benefit. Second, LRU cache
needs to update its LRU list whenever an row is accessed, so
it has additional bookkeeping overhead.

5.5 Pipelined prefetching
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Figure 8. Pipelined prefetching.

Pipelined prefetch helps reduce the waiting time at the
beginning of each clock by fetching the rows that are used

by the first early-ratio READ operations. We evaluate the
effectiveness of pipelined prefetch by comparing the time per
iteration with different early-prefetch ratios (Figure 8). To
emphasize the effect, we use a one Gigabit Ethernet network,
which has less bandwidth than our default setting. The results
show that pipelined prefetch reduces time per iteration in
general, but there is high variance across different runs. That
is because each client sends one early prefetch request and
one normal prefetch request for every master store partition,
and the replies containing rows used for the first few reads
can be delayed by non-early-prefetch requests from other
machines.

5.6 Inaccurate information
This section investigates sensitivity of the specializations to
application access patterns that differ from those initially
reported, such as can occur when an application’s access
pattern changes over time due to early convergence of some
parameters or due to work migration for load balancing. This
section evaluates robustness of iterative-ness specializations
when such changes occur, but in the absence of the application
reporting a new pattern.

In a first set of experiments (Figure 9(a)), we have each
application worker thread report an incomplete set of their
accesses, which emulates the situation where these workers
get the work of others during the run due to work reassign-
ment. We use the case when we know all access information
(missing info is 0) as the baseline, and compare the time per
iteration with different amounts of missing information. Re-
sults show that IterStore can work well with small amounts
of missing information. PR is slowed down by 16% when
we have 5% information missing. For CF and TM, we ob-
serve almost no slow down even with only 50% of accesses
reported. That is because most of the benefits that we achieve
for these two applications come from informed prefetching,
and because of the large number of application threads (64)
in each machine that access overlapping subsets of values;
as a result, reporting 50% of accesses from each thread is
enough for IterStore to know most of the rows accessed by
the machine.

In a second set of experiments (Figure 9(b)), we investi-
gate the situation where the actual accesses are fewer than
the reported ones, which can be caused by either work re-
assignment or by convergence of some parameters. We call
the reported accesses that don’t actually occur as false infor-
mation. In this experiment, we use the accesses of another
thread in a different machine as the false information. We
change the fraction of false information and compare time
per iteration with having no false information. Data point
“false information is 50%” means that half of the accesses
reported from each thread will not actually occur. The results
show that the extra false information has minimal influence
on the performance. The additional overhead comes from
extra communication and occupation of thread caches.
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Figure 7. Comparing IterStore’s static cache to LRU, varying the cache size (log scale).

0.0 0.05 0.1 0.15 0.2
Fraction of missing information
0.0

1.0

2.0

3.0

4.0

Re
la

tiv
e 

tim
e 

pe
r i

te
r

PageRank
Collaborative Filtering
Topic Modeling

(a) Missing Information.

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of false information

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Re
la

tiv
e 

tim
e 

pe
r i

te
r

PageRank
Collaborative Filtering
Topic Modeling

(b) False Information.

Figure 9. Influence of inaccurate information.

5.7 Comparison w/ single thread baselines

App. Single-threaded IterStore
(512 threads) Speedup

CF 374.7 sec 6.02 sec 62x
TM 1105 sec 11.2 sec 99x
PR 41 sec 5.13 sec 8x

Table 2. Time per iteration comparison of single-threaded
non-distributed implementations using one machine versus
IterStore using 8 machines, 512 cores and 512 threads.

We compare our parameter server implementation of
CF, TM, and PR against single thread baselines. We use
open source GibbsLDA++5 for TM, which uses the same
standard Gibbs sampling algorithm as our implementation
on IterStore. For CF and PR, we could not find fast open
source implementations using the exact same model and
algorithm and thus implemented our own. These single-
threaded implementations take full advantage of having
all data in memory and require no locking, no network
communication, and no inter-processor communication.

Table 2 compares the time per iteration on our benchmarks.
As expected, IterStore does not show speedups linear in the
number of cores because of the overhead of parallelization
and communication. Perhaps surprisingly, however, it does
show speeds at least linear in the number of machines.
This argues for the use of distributed ML implementations
with IterStore techniques, when quick completion times are

5 http://gibbslda.sourceforge.net/

important, even if the problem size is small enough to fit in
the memory of a single node and good single-threaded code
is available. The speed up for PageRank is smaller, because
our single-threaded implementation assumes the webpage
IDs are dense and stores their ranks in a vector instead of a
hash map.

6. Additional Related Work
Frameworks for distributed ML have become an active area
of systems research. Some rely on repeated executions of
MapReduce for iterations [7, 12]. Some mix MapReduce it-
erations with multi-iteration in-memory state [41, 43]. Pregel
applies the core BSP technique [19] to a long running iterative
ML framework [31]. Percolator applies iterative refinement
to a distributed key-value store with transactional updates
and value triggers [34]. GraphLab [30] and PowerGraph [21]
combine these abstractions with a graph-centric program-
ming model, flexible dependency enforcement and optional
asynchronous execution. And, several frameworks based on
parameter servers have been developed [1, 24, 35]. Many
of these systems could use the ideas explored in this paper,
exploiting repeating per-iteration access patterns to improve
their efficiency.

Other machine learning frameworks emphasize features
outside the scope of this paper, such as out-of-core disk
scheduling [27, 36]. Naiad generalizes iterative machine
learning into a Dryad-like dataflow model for iterative and
streaming computation of many forms [32].

Informed or application-aware caching and prefetching
have been explored in file systems and databases [8, 9,
22, 29, 33]. In addition to exploring use of future access
knowledge, researchers have explored a range of approaches
to obtaining it, including explicit application calls [9, 33],
compiler analysis [6], speculative execution [11, 17], and
dynamic pattern detection [22, 29]. Some of our detection
and exploitation of per-iteration patterns build on these ideas,
adapting them to the specific characteristics of parameter
servers for supporting parallel and distributed ML.

Data placement in NUMA systems was well-studied two
decades ago for multiprocessor systems [4, 10]. The re-
emergence of NUMA issues in multi-socket systems is well-



known [3], bringing back the value of carefully placing
data and threads to increase locality. Similar access latency
asymmetry has also been noted in single-socket many-core
chips [37, 38]. Exploiting iterative-ness, as explored in this
paper, allows one to orchestrate such locality without the
dynamic identification and re-allocation overheads usually
found in general-purpose solutions.

7. Conclusion
Many iterative ML applications make the same pattern of read
and update accesses each iteration. Knowledge of this pat-
tern can be exploited in parallel ML computations to reduce
the overheads of maintaining the state shared among worker
threads. With minimal application assistance, a parameter
server can obtain each thread’s pattern and specialize its data
structures, data placement, caching, and prefetching policies.
Experiments with ML applications show that such exploita-
tion of iterative-ness can reduce per-iteration execution times
by 33–98%.
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